
Discussion
• Measurement uncertainties must be always quantified also

in upper-air homogenized dataset. RHARM dataset is the
first providing measurement uncertainties.

• Uncertainties in historical time series must be properly
estimated/evaluated and validated to the possible extent to
avoid our conclusions may be mistaken. Metrologists
approach oftern differs from the climatologists, for example
in the quantificaton of systematic uncertainteis vs bias
adjustments.

• The uncertainties in climate observations must include
other uncertainty contributions (e.g. sampling, structural
interpolation, representativeness, sampling,…).

• More examples showing the impact of using uncertainties
in climate applications are recommended.

References
• Hersbach, H, Bell, B, Berrisford, P, et al. The ERA5 global

reanalysis. Q J R Meteorol Soc. 2020; 146: 1999–
2049. https://doi.org/10.1002/qj.3803.

• Madonna, F., Tramutola, E., SY, S., Serva, F., Proto,
M., Rosoldi, M., et al. (2022). The new Radiosounding
HARMonization (RHARM) data set of homogenized
radiosounding temperature, humidity, and wind profiles
with uncertainties. Journal of Geophysical Research:
Atmospheres, 127,
e2021JD035220. https://doi.org/10.1029/2021JD035220

• Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N.,
Thorne, P. W., and Vömel, H.: Reference Quality Upper-Air
Measurements: guidance for developing GRUAN data
products, Atmos. Meas. Tech., 3, 1217-1231,
doi:10.5194/amt-3-1217-2010, 2010.

• Finazzi, F, Fassò, A, Madonna, F, Negri, I, Sun, B, Rosoldi,
M. Statistical harmonization and uncertainty assessment in
the comparison of satellite and radiosonde climate
variables. Environmetrics. 2019; 30:e2528. https://doi.org/
10.1002/env.2528

Acknowledgements
This work was done on behalf of the European Union’s

Copernicus Climate Change Service implemented by ECMWF. 
Use of data as stated in the Copernicus licence agreement is

acknowledged.

Upper-air data uncertainties
The quality of the global radiosounding observations depends on:
• Sensor changes,
• Changes in the data processing,
• Calibration bias and drifts,
• Ventilation,
• Radiation correction and modelling algorithm,
• Sensor orientation,
• Sensor time-lag constant.

Historical time series are also affected by:
• Station relocations,
• Mistakes in the data digitization,
• Poor or missing metadata,
• Missing information on observation time,

Rationale
• Long and homogeneously observed time series of the climate

variables are an essential source to diagnose climate change.

• Homogenization and uncertainty characterization of climate data
records is a challenging but indispensabile task to improve
consistency in the observations collected over the decades.

• Upper-air data have been and are still considered a unique source
of information for the study of climate variability and an anchor
information for the atmospheric reanalysis (Hersbach et al., 2020).

• More recently, an increasing number of networks is caring of
providing measurement uncertainties; few satellite retrievals comes
with the uncertainty quantification; atmospheric renalysis is
provided with an uncertainty (systematic model errors not taken into
account, uncertainties assumed uncorrelated).

• For the upper-air data, a similar effort is still missing and in the most
popular homogenized datasets, used by the scientific community, an
estimation of measurement uncertainties was never provided.

Radiosounding HARMonization (RHARM) Climate applications
The uncertainties in climate observations pose a set of methodological
and practical challenges for both the analysis of long-term trends and
the comparison between data and model simulations.

This requires the estimation of further sources of uncertainty,
including at minimum:

1. Sampling and structural uncertainties

2. Interpolation uncertainty

3. Representativeness (collocation) uncertainty

4. Residual inhomogeneities

Estimation of uncertainties in historical upper-air data 
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Comparison during of IGRA (raw upper-air), RHARM (homogenized
upper-air) and ERA5 reanalysis during the 2018 Sudden Stratospheric
Warmings (SSWs).

RHARM estimates combined observational uncertainties using residuals of
a time series with respect to predictor model obtained using a LOESS
smoother (Madonna et al., 2022).

εX=xi-qi i=1, 2,……,T 

where xi is the measurement for the variable x at the instant i, qi is the
LOESS modelled value and T is time length of the time series.

• The statistical model is optimized, for each individual station, to match
the residuals of the corresponding recent measurements processed
using a GRUAN-like algorithm.

• The obtained smoothing parameter is then assumed to be “optimal” for
the entire time series.

• The final value of the uncertainty is obtained by averaging the residuals
on a monthly time scale.

• RHARM uncertainties have been validated following the approach by
Merchant et al., 2017, but using O-B data (RHARM-minus-Background)
in the NH and in the tropics at 300 hPa for T and RH.
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Sampling and structural uncertianties
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Differences in the temperature decadal trends estimated from IGRA
radiosouding repository, using different data samples (random stations
selection, per climate region). P76 and P51 are two dataset selected
subsampling the set of IGRA stations (taking 76% and 51% of IGRA
stations).
Trend differences due to three robust regression methods are also
shown.

Sy et al. 2020 QJRMS

Larger differences

BIPM-WMO Workshop 2022

• RHARM uses reference and international intercomparison
datasets to adjust non-climatic effects for of documented
radiosonde types (since 2004).

• Use of statistical techniques to constraint historical data on the
most recent data.

• Use of statistical techniques to quantify uncertainties in historical
data using data model tested on the reference data.

RHARM is the first homogenized dataset providing an estimation of 
measurement uncertainties for all pressure levels.

Global distribution and quantity of RHARM homogenized profiles in millions of ascents from 1978 to present. The
+ symbol indicates IGRA stations (1156) reporting data since 1978 to present (last access to IGRA 31-12-2020).

Representativeness/collocation uncertainty

Example of quantification of collocation-mismatch uncertainty (in the
plot in blue, Immler et al. 2010):

The comparison is based on a likelihood-based approach which exploits
the measurement uncertainties in a natural way (Finazzi et al, 2019).

Sodankyla, FI, WMO ID 2836, 300 hPa 00:00 UTC (dark)

Sensor changes

Madonna et al., 2022, JGR

RS18 RS21  RS80     RS92              RS41


